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Abstract

The FEM is employed to study the effect of notch depth on a new strain-concentration factor (SNCF) for rectan-
gular bars with a single-edge notch under pure bending. The new SNCF Knew

e is defined under the triaxial stress state at
the net section. The elastic SNCF increases as the net-to-gross thickness ratio h0/H0 increases and reaches a maximum
at h0/H0 = 0.8. Beyond this value of h0/H0 it rapidly decreases to the unity with h0/H0. Three notch depths were selected
to discuss the effect of notch depth on the elastic–plastic SNCF; they are the extremely deep notch (h0/H0 = 0.20), the
deep notch (h0/H0 = 0.60) and the shallow notch (h0/H0 = 0.95). The new SNCF increases from its elastic value to the
maximum as plastic deformation develops from the notch root. The maximum Knew

e of the shallow notch is considerably
greater than that of the deep notch. The elastic Knew

e of the shallow notch is however less than that of the deep notch.
Plastic deformation therefore has a strong effect on the increase in Knew

e of the shallow notch. The variation in Knew
e with

M/MY, the ratio of bending moment to that at yielding at the notch root, is slightly dependent up to the maximum Knew
e

for the shallow notch. This dependence is remarkable beyond the maximum Knew
e . On the other hand, the variation in

Knew
e with M/MY is independent of the stress–strain curve for the deep and extremely deep notches.
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Nomenclature

a0, a initial and current distances, respectively, from the transverse load to support (see Fig. 2)
b0 width of notched rectangular bar
E Young�s modulus
hc current height under compressive ex at the net section (see Fig. 1)
ht current height under tensile ex at the net section (see Fig. 1)
h0 initial thickness at the net section (see Fig. 1)
H0 initial thickness at the gross section (see Fig. 1)
Kcon

e conventional SNCF
Knew

e new SNCF
M bending moment per unit width = Pa (N mm/mm)
MY M at yielding at the notch root (N mm/mm)
P transverse load per unit width (N/mm) (see Fig. 2)
econn conventional nominal strain
enewn new nominal strain = etn = Maximum tensile longitudinal strain obtained from the assumed

linear distribution (see Fig. 1)
ex longitudinal strain
ðetxÞmax maximum tensile longitudinal strain at the notch root
m Poisson�s ratio
n distance from the current centre of the net section (see Fig. 1)
q0 initial notch radius (see Fig. 1)
req equivalent stress ¼ fðrx � ryÞ2 þ ðry � rzÞ2 þ ðrz � rxÞ2g1=2=

ffiffiffi
2

p

rx longitudinal stress
ry transverse stress
rz stress in the width direction
rY tensile yield stress
/ = 6/E(ht + hc)

2

w distance from the current neutral surface (see Fig. 1)
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1. Introduction

Many analytical, numerical and experimental studies have been done on the elastic stress-concentration
factor (SSCF) for various types of notch under tension and under bending (Leven and Frocht, 1952; Nish-
ida, 1974; Kato, 1991; Noda et al., 1995; Pilkey, 1997). Neuber�s analytical results have been the main
source for the effect of notch depth on the elastic SSCF Pilkey (1997). The results indicate that the elastic
SSCF rapidly decreases with decreasing notch depth from the maximum value at an intermediate notch
depth. This indicates that the elastic SSCF of a shallow notch is much less than that of a notch with an
intermediate notch depth. However, little attention has been paid to the elastic strain- concentration factor
(SNCF).

The effect of plastic deformation in the vicinity of the notch root on the SSCF and the SNCF has been
studied under axial tension. The studies on the elastic–plastic SSCF and SNCF have been reviewed in a
previous paper Majima (1999). These studies indicate that the SSCF decreases from its elastic value towards
unity. On the other hand, Majima (1999) has proposed a new SNCF for axial tension. This new SNCF in-
creases from its elastic value as plastic deformation develops from the notch root and maintains a high
value even after general yielding. These results indicate that the SNCF is more important than the SSCF.
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The proposed new SNCF has been defined under the triaxial stress state at the net section (Majima,
1999). This has enabled the new SNCF to provide the reasonable values consistent with concave distribu-
tions of the axial strain on the net section. Moreover, the new SNCF has removed the contradiction result-
ing from the definition of the conventional SNCF. That is, the conventional SNCF provides the values less
than unity in spite of the concave distributions of the axial strain under elastic–plastic deformation (Maj-
ima, 1999). The average axial strain, or the nominal strain, of the conventional SNCF has been defined un-
der the uniaxial stress state (Neuber, 1961), completely unrelated to the stress state at the net section
(Majima, 1999). This difference in the stress state causes the above contradiction in the conventional SNCF.
This means that the SNCF for any type of loading should be defined under the triaxial stress state at the net
section.

Few studies have been done on the elastic–plastic strain concentration under bending. It follows that the
effect of notch depth has not been evaluated on the elastic–plastic SNCF under bending. A new definition of
the elastic–plastic SNCF for bending has been proposed by Majima and Ishizaka (2003) and applied to
plane-strain rectangular bars with symmetrical notches under pure bending. The nominal strain for this
new SNCF has been defined under the triaxial stress state at the net section. This new SNCF has been suc-
cessful to provide the reasonable values for the non-linear distribution of the longitudinal strain on the net
section (Majima and Ishizaka, 2003).

The aim of this study is to examine the effect of notch depth on the elastic–plastic new SNCF of plane-
strain rectangular bars with a single-edge notch under pure bending. The strain distributions on the net sec-
tion were obtained using a finite element method (FEM). The FEM calculations were performed up to a
deformation level slightly beyond general yielding. The materials employed are an Austenitic stainless steel
and an Ni–Cr–Mo steel.
2. The definition of the new SNCF

The proposed new SNCF for pure bending has been defined as the ratio of the maximum tensile longi-
tudinal strain at the notch root ðetxÞmax to the new nominal strain enewn (Majima and Ishizaka, 2003), i.e.
Knew
e ¼ ðetxÞmax

enewn

ð1Þ
Since ðetxÞmax is the actual longitudinal strain at the notch root, ðetxÞmax is independent of definition. The new
SNCF is thus presented by defining a new nominal strain.

The longitudinal strain ex can be assumed to have a linear distribution on the net section if the notch
effect is negligible. Fig. 1 schematically shows the non-linear distribution of ex and this assumed linear dis-
tribution. A new nominal strain is therefore given by the maximum tensile longitudinal strain obtained
from this assumed linear distribution at the notch root, etn.

The assumed linear distribution is determined by the following equation (Majima and Ishizaka, 2003):
Z ht

�hc

exb0wdw ¼
Z ðhtþhcÞ=2

�ðhtþhcÞ=2
etn

2n
ðht þ hcÞ

b0ndn ð2Þ
where ht and hc are the current heights from the neutral surface to the notch root and to the unnotched
surface opposite to the notch root, respectively. The values of ht and hc change with deformation, and hence
the left-hand side of Eq. (2) should be integrated between the current limits �hc and ht. On the other hand,
the axial force due to the assumed linear distribution must be zero at the net section under pure bending.
This means that the assumed linear distribution must be zero at the centre of the current thickness (ht + hc).
The right-hand side of Eq. (2) should thus be integrated from �(ht + hc)/2 to (ht + hc)/2.



Fig. 1. Initial and current longitudinal sections of a notched rectangular specimen with a single-edge notch.
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Eq. (2) presents the following new nominal strain:
enewn ¼ etn ¼
6

ðht þ hcÞ2
Z ht

�hc

exwdw ð3Þ
For plane-strain elastic deformation rz = m(rx + ry), and hence Eq. (3) is transformed into
enewn ¼ / ð1� m2Þ
Z ht

�hc

rxwdw� ðmþ m2Þ
Z ht

�hc

rywdw

� �

¼ / ð1� m2ÞM � ðmþ m2Þ
Z ht

�hc

rywdw

� � ð4Þ
where / ¼ 6=Eðht þ hcÞ2.
The conventional SNCF has been defined as
Kcon
e ¼ ðetxÞmax

econn
where econn is the conventional nominal strain, given by the maximum tensile longitudinal strain at the out-
side surface of a plane-strain unnotched rectangular bar with the cross-section identical with the net section.
This means that econn has been defined under the biaxial stress state, because ry = 0 in unnotched bars. It
should be noted that this biaxial stress state is completely unrelated to the stress state at the net section
at any deformation level.

For plane-strain elastic deformation, econn is given by
econn ¼ /ð1� m2ÞM ð5Þ

Eqs. (4) and (5) give the following equation:
enewn ¼ econn � /ðmþ m2Þ
Z ht

�hc

rywdw ð6Þ
Eqs. (4) and (6) indicate that the new nominal strain in elastic deformation is defined under the triaxial
stress state at the net section. In plastically deformed regions the plastic component of the longitudinal
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strain is given under the triaxial stress state, as indicated by the theory of plasticity. That is, the magnitude
and the distribution of the longitudinal strain ex are affected by the magnitudes and the distributions of the
three stress components on the net section, namely rx, ry and rz. The theory of plasticity indicates that
the plastic component of ex is related to the equivalent stress req. The equivalent stress req is a function
of the stress differences (rx � ry)

2, (ry � rz)
2 and (rz � rx)

2 (Johnson and Meller, 1983). Accordingly,
the new nominal strain, given in Eq. (3), is defined under the triaxial stress state at the net section at
any deformation level. This means that the new nominal strain is more logical and more reasonable than
the conventional one for the calculations of the SNCF.
3. Specimen geometries

The notched rectangular bars employed have a single-edge U- or circular arc notch on the surface. The
thickness of the net section h0 was varied to examine the effect of the notch depth, whereas the gross thick-
ness H0 of 16.7 mm was held constant.

The net-to-gross thickness ratio h0/H0 is varied from 0.2 to 0.98 to evaluate the effect of notch depth on
the new SNCF. Three notch depths of h0/H0 = 0.2, 0.6 and 0.95 have been selected to discuss the effect of
notch depth on the elastic–plastic SNCF. These notch depths given by h0/H0 = 0.2, 0.6 and 0.95 are re-
ferred to as the extremely deep notch, the deep notch and the shallow notch, respectively. Three notch radii
q0 of 0.5, 1 and 2 mm are employed to vary the notch sharpness. The width b0 and half length of the
notched specimens are 1 mm and 115 mm, respectively.
4. FEM calculations

A finite element mesh of one half of a notched specimen is shown in Fig. 2. An eight-node element was
chosen to model the specimens. The number of nodes and elements are 6133 and 1980, respectively, and the
degrees of freedom are 12266.

The FEM calculations were carried out under the plane-strain condition, using the software MARC
K6.2 on an APOLLO workstation (MARC User Manual, 1994). The nodal displacement is zero in the
x -direction at the net section, and zero in the y -direction at the support.
Ho=16.7 mm

ρo

y

x

35 mm80 mm

ho 

P ao= 35 mm

Fig. 2. Finite element mesh and four-point bending.
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Four-point bending was employed to provide pure bending, as shown in Fig. 2. The transverse load P

was applied at the initial distance a0 of 35 mm from the support. The initial half length subjected to pure
bending is 45 mm, which is a sufficient length to obtain the pure nature of notch effect at the net section.
The increment of P is 1 N/mm.

The FEM calculations on the unnotched bar were also performed to obtain the nominal strain for the
conventional SNCF. The same conditions as those imposed on the notched bars were employed. The
unnotched bar has the cross-section identical with the net section. The half length is 50 mm. The transverse
load was applied at a0 = 20 mm from the support. The number of nodes and elements are 4473 and 1440
respectively.
5. Stress–strain relationships

An austenitic stainless steel and an Ni–Cr–Mo steel were used to provide marked differences both in the
flow stress and in the rate of strain hardening. The true stress r-plastic strain ep relations were obtained
from unnotch tension tests. The results were divided into a few plastic strain ranges to fit the following
fifth-degree polynomial accurately:
Table
Elastic

Mater

Austen
stee

206.0,

Ni–Cr
206.0,
r ¼ C0 þ C1ep þ C2e
2
p þ C3e

3
p þ C4e

4
p þ C5e

5
p

The values of the polynomial coefficients and the plastic strain ranges are listed in Table 1, together with
Young�s modulus E, Poisson�s ratio m and tensile yield stress rY. Fig. 3 shows the tensile true stress-plastic
strain curves obtained from the polynomials. These curves were also used as the compressive true stress-
plastic strain curves. An incremental algorithm follows plastic action as it develops and so accounts for
plasticity�s path-dependent nature. Each step of the sequence is based on material properties appropriate
to that step.
6. Results and discussion

6.1. Effect of the notch depth on elastic Knew
e and Kcon

e

Fig. 4 shows the effect of the notch depth on the elastic new and conventional SNCFs. The elastic value
of the new SNCF is greater than that of the conventional SNCF. This is independent of notch depth and
notch radius. The conventional nominal strain (Eq. (5)) has been defined under biaxial state of stress, while
the new nominal strain (Eq. (3)) is defined under triaxial stress state at the net section. The nominal strain
under biaxial stress state is larger than that under triaxial stress state. This gives the conventional SNCF an
elastic value less than that of the elastic value of the new SNCF. Moreover, the new SNCF is more reliable
1
constants, tensile yield stresses and polynomial coefficients

ial E (GPa), m, rY (MPa) Plastic strain
range

C0 C1 C2 C3 C4 C5

itic stainless
l

ep 6 0.2 2.459 · 102 4.389 · 103 �3.265 · 104 2.402 · 105 �8.899 · 105 1.258 · 106

0.30, 245.9 0.2 < ep 6 0.5 3.789 · 102 1.535 · 103 1.173 · 103 �1.874 · 103 0.0 0.0

–Mo steel ep 6 0.1 5.250 · 102 7.644 · 103 �7.377 · 104 2.596 · 105 0.0 0.0
0.30, 525.0 0.1 < ep 7.426 · 102 6.945 · 102 �8.143 · 10 0.0 0.0 0.0
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Fig. 3. True stress–plastic strain curves used in the FEM calculations.
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Fig. 4. New and conventional SNCFs in elastic deformation.
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than the conventional one; because it expresses the real stress state at the net section, which is triaxial stress
state.

The elastic new SNCF increases with increasing net-to-gross thickness ratio h0/H0 and reaches its max-
imum at h0/H0 = 0.8. By further increasing h0/H0, the elastic new SNCF decreases with h0/H0. It rapidly
decreases especially in the range h0/H0 > 0.85. The elastic new and conventional SNCFs are approximately
equal for shallow notch. This becomes prominent with increasing notch radius. It should be noted that the
elastic new SNCF of the shallow notch (h0/H0 = 0.95) is less that that of the deep notch (h0/H0 = 0.6).
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6.2. Shift of neutral surface

Eq. (3) indicates that the new nominal strain depends strongly on the values of hc and ht. Fig. 5 shows the
variations in hc/ht with bending moment per unit width M (=Pa), together with those in the current thick-
ness at the net section (ht + hc). For symmetrical deep notches the initial value of hc/ht is 1.0 irrespective of
notch radius (Majima and Ishizaka, 2003), whereas it depends on notch radius for a single-edge notch,
ranging from 2.09 to 1.73. The value of hc/ht slightly decreases even in elastic deformation. This decrease
is less in a single-edge notch than in symmetrical deep notches as given by Majima and Ishizaka (2003).
That is, Majima and Ishizaka (2003) have proved that the value of hc/ht rapidly decreases from the initial
value for the symmetrical deep notches. The rate of decrease in hc/ht increases as plastic deformation devel-
ops from the notch root and reaches the minimum value around general yielding for q0 = 0.5 and 1 mm,
and before general yielding for q0 = 2 mm. This means that the neutral surface shifts towards the unnot-
ched surface, subjected to compressive ex. On further deformation, hc/ht shows a rapid increase; that is,
the neutral surface shifts towards the notch root. The maximum and minimum values of hc/ht are approx-
imately 2.09 for q0 = 0.5 mm and 1.48 for q0 = 2 mm, respectively. The distances from the notch root to the
neutral surface are therefore 64.7% and 80.6% of the current half thickness (ht + hc)/2, respectively.

Notch radius strongly affects the value of hc/ht from elastic deformation up to general yielding. The value
of hc/ht increases with decreasing notch radius at any deformation level. However, the difference in value is
slight around general yielding. It should be noted that for symmetrical deep notches the value of hc/ht is
nearly independent of notch radius up to general yielding (Majima and Ishizaka, 2003). The value of
(ht + hc) maintains the initial value h0 at any deformation level. These are independent of notch radius
and notch depth.

6.3. Variations in the new SNCF Knew
e with bending moment M

Fig. 6 shows the variations in Knew
e with M for the deep and shallow notches. For the extremely deep

notch the range of M is small because of the small value of h0. It is thus difficult to show the variation
in Knew

e in the same figure. General yielding is not confirmed for the shallow notch in the load range used.
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The stress–strain curve has a strong effect on the variation in Knew
e with M. However, the manner of the

increase and decrease in Knew
e is similar irrespective of the stress- strain curve. The new SNCF is constant

during elastic deformation. It rapidly increases from its elastic value to the maximum as plastic deformation
develops from the notch root.

The bending moment at yielding at the notch root MY, at which Knew
e starts to increase, increases with

increasing h0/H0. This is because the magnitude of MY is basically proportional to (h0)
3. The magnitude of

MY is also affected by the distribution of the longitudinal stress on the net section. This distribution is clo-
sely related to notch radius, which dominates the elastic SSCF; this elastic SSCF means the elastic conven-
tional SSCF, which has been defined under the triaxial stress state at the net section (Majima, 1999). The
difference in the elastic SSCF, given in Table 2, between h0/H0 = 0.6 and 0.95 is small compared with the
difference in (h0)

3. This provides the increase in MY with an increase in h0/H0. The value of MY is also pro-
portional to the tensile yield stress rY.

On further deformation, Knew
e decreases from its maximum. The maximum Knew

e is much greater than the
elastic Knew

e for the shallow notch. Moreover, this maximum Knew
e of the shallow notch is considerably

greater than the maximum Knew
e of the deep notch. On the other hand, the elastic Knew

e of the shallow notch
is less than that of the deep notch, as clearly shown in Fig. 4. A shallow single-edge notch therefore has a
strong effect on strength and fracture under elastic–plastic deformation even if the elastic Knew

e is low.
The sharp decrease from the maximum Knew

e is due to the sharp increase in the new nominal strain enewn .
Fig. 7 shows that enewn rapidly increases after the maximum Knew

e . This is because the longitudinal strain
around the notch root rapidly increases owing to the rapid development of the plastic deformation around
Table 2
Elastic new SNCF and elastic SSCF

q0 (mm) 0.5 1.0 2.0

h0/H0 0.20 0.60 0.95 0.20 0.60 0.95 0.20 0.60 0.95
New SNCF 2.240 3.785 3.353 1.721 2.735 2.560 1.405 2.040 2.024
SSCF 2.189 3.619 3.191 1.686 2.645 2.453 1.381 1.988 1.955
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the notch root. Fig. 8 shows the distributions of the tensile longitudinal strain in the range 0 6 w/ht 6 1.0
for the shallow notch. The distribution is linear and nearly constant in the range 0 6 w/ht 6 0.8, and is shar-
ply concave in the range w/ht > 0.8. The increase in (etxÞmax after the maximum Knew

e is much greater than
that before the maximum Knew

e . This indicates the rapid development of the plastic deformation around
the notch root. This causes a high rate of increase in enewn . As a result, Knew

e sharply decreases with M.
The rapid increase in Knew

e from its elastic value to the maximum becomes greater with decreasing notch
radius for the shallow notch. This is because the increase in ðetxÞmax, as shown in Fig. 7, increases with
decreasing notch radius, while enewn is almost independent of notch radius. This independence is due to
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the concentration of the plastic deformation in a small area around the notch root. This occurs when the
notch radius of a shallow single-edge notch is sufficiently small compared with the initial thickness h0.

Fig. 9 shows the distributions of the normalized longitudinal strain ex=ðetxÞmax at the maximum Knew
e in the

range 0 6 w/ht 6 1.0; the distribution on the net section is schematically shown in Fig. 1. The distribution in
the range w/ht > 0.8 is sharply concave for the shallow notch. On the other hand, the distribution in the
range 0 6 w/ht 6 1.0 is mildly concave for the deep notch, and is more mildly concave for the extremely
deep notch. Fig. 9 also indicates that the distributions of ex=ðetxÞmax on the net section are independent of
the stress–strain curve. This suggests that the deformation level at the maximum Knew

e is the same even if
the value of M at the maximum Knew

e is different because of the difference in the stress–strain curve.

6.4. The significance of the new SNCF

Comparisons between the new and conventional SNCFs are made in Fig. 10. The conventional SNCF
Kcon

e increases from its elastic value to the maximum, which is greater than the maximum Knew
e . On further

deformation, it rapidly decreases to approximately unity or less than unity. This rapid decrease is caused by
the rapid increase in the conventional nominal strain econn . This is because econn is obtained under the biaxial
stress state of the plane-strain unnotched bar. That is, the longitudinal strain under the biaxial stress state
becomes much greater than that under the triaxial stress state. For this reason Kcon

e becomes much less than
Knew

e and decreases to the values less than unity.
Fig. 11 shows the distributions of transverse stress ry on the net section. The value of ry is equal to zero

at the notch root and at the unnotched surface opposite to the notch root, while it is different from zero
through the net section. This is independent of the notch depth and of the notch radius. This means that
Z ht

�hc

rywdw 6¼ 0
at any deformation level, and hence the effect of ry can not be neglected. Therefore, the conventional nom-
inal strain econn , neglecting the effect of ry, is unreasonable for the calculation of the SNCF.
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Moreover, the non-linear distributions of ex=ðetxÞmax, shown in Fig. 9, require that the SNCF should be
greater than unity irrespective of deformation level. Fig. 10 shows that Knew

e > 1.0 even at the general yield-
ing, whereas Kcon

e 6 1.0. The definition of Kcon
e is thus unreasonable also for a single-edge notch as well as

for the symmetrical deep notches (Majima and Ishizaka, 2003). The present results and the results given by
Majima and Ishizaka (2003) clearly suggest that Knew

e is more reasonable than the Kcon
e of predicting

strength and fracture of the notched bars.
For pure bending, the SSCF has been defined as the ratio of the longitudinal stress rx at the notch root

to the nominal stress rnð¼ 6M=b0h
2
0), (Leven and Frocht, 1952; Kosmatka et al., 1990; Pilkey, 1997). In the
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elastic deformation, Fig. 12 shows that the longitudinal stress has a concave distribution on the net section,
and rx at the notch root is equal to the maximum longitudinal stress (Leven and Frocht, 1952; Nishida,
1974; Kato, 1991; Noda et al., 1995; Pilkey, 1997). The concave distribution of rx becomes mild or mildly
convex as the plastic deformation develops from the notch root. The maximum rx lies some way from the
notch root inside the plastic zone, as clearly shown in Fig. 12. The rn becomes greater than rx at the notch
root. Thus, the elastic–plastic SSCF rapidly decreases from its elastic value to unity as the plastic develops
from the notch root. This means that the stress concentration disappears; and the SSCF no longer appro-
priate to predict strength and fracture of the notched bars under elastic–plastic deformation. Therefore, the
new SNCF is more reasonable of predicting strength and fracture of the notched bars.
6.5. Effect of the stress–strain curve on the new SNCF

The parameter M/MY can eliminate the difference in the stress–strain curve from the Knew
e versus M/MY

relation for the symmetrical deep notches. This is true even if there is a marked difference (Majima and Ishi-
zaka, 2003) shown in Fig. 3. Fig. 13 shows the variations in Knew

e with M/MY for the three notch depths. It
should be noted that the use of M/MY makes it possible to draw this variation of the extremely deep notch
in the same figure.

The new SNCF increases from its elastic to the maximum and decreases after that. This is indepen-
dent of notch depth. The increase in Knew

e from the elastic Knew
e to the maximum increases with decreas-

ing notch depth. This increase is remarkable for the shallow notch. This indicates the localization of
plastic deformation around the notch root. In contrast, the increase is very small for the extremely deep
notch.

The variation in Knew
e is independent of the stress–strain curve for the deep and extremely deep notches.

On the other hand, it is slightly dependent up to the maximum Knew
e for the shallow notch. This dependence

is remarkable after the maximum Knew
e .

The independence of the variation in Knew
e with M/MY from the stress–strain curve is closely related to

the distribution of the longitudinal stress rx. The distribution of the normalized longitudinal stress rx/rY
determines the ratio of bending moment to tensile yield stress M/rY, i.e.
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Z
A

rx

rY

wdA ¼ 1

rY

Z
A
rxwdA ¼ M

rY

ð7Þ
where A is the net area. On the other hand, the theory of elasticity shows that the distributions of rx depend
only on the notch geometry
rx ¼ ðrt
xÞmaxf ðwÞ ð8Þ
Moreover, the equivalent stress at the notch root under the plane-strain elastic deformation is given by
ðreqÞmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� mþ m2

p
ðrt

xÞmax ð9Þ

where (req)max and ðrt

xÞmax denote the maximum equivalent stress and the maximum tensile longitudinal
stress at the notch root, respectively. The theory of elasticity shows that the magnitude of rx on the net
section is proportional to M. Consequently (req)max shows a linear increase with an increase in M. At
the onset of yielding at the notch root (req)max is equal to rY; then Eq. (9) becomes
rY ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� mþ m2

p
ðrt

xÞmax ð10Þ

This equation can be transformed to
ðrt
xÞmax ¼

rYffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� mþ m2

p ð11Þ
Substitution of Eq. (11) into Eq. (8) gives that
rx ¼
rYffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� mþ m2
p f ðwÞ ð12Þ
This means that MY is proportional to rY as indicates by the following relation:
M ¼
Z
A
rxwdA

MY ¼
Z
A

rYffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� mþ m2

p f ðwÞwdA ¼ rYffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� mþ m2

p
Z
A
f ðwÞwdA

ð13Þ
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then, MY is proportional to rY because
MY ¼ arY ð14Þ

where a ¼ constant ¼ 1ffiffiffiffiffiffiffiffiffiffiffi

1�mþm2
p R

Af ðwÞwdA.

The parameterM/MY is thus directly related to the distribution of rx/rY as shown in the following equa-
tion, which is derived from Eqs. (7) and (14)
M
rY

¼ M
MY=a

¼ a
M
MY
Fig. 14 shows the distributions of rx/rY on the net section for the three notch depths. There is little differ-
ence in the distribution of rx/rY between two materials for the deep and extremely deep notches. On the
other hand, the clear difference is recognized in the range 0.8 6 w/ht 6 1.0 for the shallow notch. This clear
difference brings about the dependence of Knew

e on the stress–strain curve.
7. Conclusions

The effect of notch depth on the new SNCF Knew
e has been studied for plane-strain rectangular bars with

a single-edge U- or circular arc notch under pure bending. This new SNCF has been defined under the tri-
axial stress state at the net section. This has enabled the new SNCF to provide reasonable values for the
non-linear distributions of the longitudinal strain. The elastic SNCF versus net-to-gross thickness ratio
h0/H0 curve is convex with a maximum value at approximately h0/H0 = 0.8. Beyond this value of h0/H0

the elastic SNCF rapidly decreases towards the unity at h0/H0 = 1.0. The new SNCF increases from its elas-
tic value to the maximum and decreases after that. This is independent of notch depth. The maximum Knew

e

of the shallow notch (h0/H0 = 0.95) is considerably greater than that of the deep notch (h0/H0 = 0.60), while
the elastic Knew

e of the shallow notch is less than that of the deep notch. The plastic deformation around the
notch root has a strong effect on the rapid increase in Knew

e for the shallow notch. This is because plastic
deformation is restricted in the narrow area around the notch root. The rate of decrease from the maximum
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Knew
e increases with decreasing notch depth. The variation in Knew

e with M/MY is dependent on the stress–
strain curve for the shallow notch. This dependence is slight up to the maximum Knew

e . On the other hand,
the variation in Knew

e with M/MY is independent of the stress–strain curve for the deep and extremely deep
notches.
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